Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach

Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most studies to date have neglected time dimension and focus instead on the "average" spatial pattern of disease risk, thereby masking time trajectories of disease...

متن کامل

Bayesian Nonparametric Spatio-Temporal Models for Disease Incidence Data

Typically, disease incidence or mortality data are available as rates or counts for specified regions, collected over time. We propose Bayesian nonparametric spatial modeling approaches to analyze such data. We develop a hierarchical specification using spatial random effects modeled with a Dirichlet process prior. The Dirichlet process is centered around a multivariate normal distribution. Thi...

متن کامل

Nonparametric prediction of nonstationary spatio-temporal processes

In spatial statistics often the response variable at a given location and time is observed together with some covariates which are known to influence the response. In several applications the relationship between the response and covariates may be unknown, and to prevent misspecification of the model, a nonparametric approach could be appropriate. In this paper prediction and forecasting of the...

متن کامل

A Model-Based Approach for Analog Spatio-Temporal Dynamic Forecasting

Analog forecasting has been applied in a variety of fields for predicting future states of complex nonlinear systems that require flexible forecasting methods. Past analog methods have almost exclusively been used in an empirical framework without the structure of a model-based approach. We propose a Bayesian model framework for analog forecasting, building upon previous analog methods but acco...

متن کامل

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2011

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0017381